STATISTICAL SCIENCES |
AND |
DATA ANALYSIS

" PROCEEDINGS OF THE
THIRD PAcIFic AREA StamisTical C ONFERENCE

EDITORS

Kameo Marusima
MabaN L. Pur
Takesl Havakawa

/IVSP/l]

Utrecht, The Netherlands, 1993




Stat. Sei. & Data Anal., pp. 109-128
K. Matsusita e af. (Eds)
© VSP 1993

CIRCULAR REGRESSION

Y. R. SARMA and S.RAOQ JAMMALAMADAKA
Indian Statistical Institute, Calcuita, India

Department of Statistics and Applied Probability, University of Californie,
Santa Barbara, California, US4.

i
Abstract. The classical methods of regression analysis cannot be appl

ied when

observations are directions, measured as angles in a plane with reference to a fixed sense

of rotation and a fixed zero direction. In this paper, a concept of circular regression is

introduced and estimation of the regression parameters is discussed. Some

empirical

metheds and asymptotic tests for the determination of the degree of the |regression
equation, are discussed and some recursive algorithms developed. Tests and estimation

of regression parameters in some parametric models are also presented.

Keywords: Directions, circular data, regression, trigonometric polynomials, tests of

hypotheses, circular models.

1. INTRODUCTION

Observations in the form of directions on two or more variables, are made [in several

experiments. Sometimes one may consider fixing the direction of one (independent)

variable and observe the direction of the other (dependent) variable. In such s

ituations,

one is naturally interested in the problem of regression or predicting one varigble using
the values of the other. It is clear that the classical regression analysis developed for
linear variables cannot be applied in this situation because of the natural restrictions

one has for directional variables. In what follows, a method of predicting on
variable based on another circular variable is presented. The concept o
regression has not received much attention and only recently attention is drax
problem (see Jupp and Mardia {1), Batschelet [2], Rivest [3]). In Section 2, W
a concept of circular regression and discuss how the parameters of the modd
estimated. In Section 3, some criteria for the determination of the degr
trigonometric polynomials introduced in Section 2 are given along with some
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approaches and large sample tests for the same. Some recursive a.lgorathms for the
computation of the estimates are also presented. In Section 4, regression para.meters in
some specific parametric models as well as some tests of regression parameters in such
models are presented. For a discussion of a "correlation coefficient" which can be used
as a measure of association between two circular variables, the reader lis referred to
Jammalamadaka and Sarma [4]. :

2.  CIRCULAR REGRESSION o
Let (a, #) be a pair of random variables which are directions, both lfleasured with
reference to the same zero direction and the same sense of rotation. The uangles can be
treated as unit vectors in the plane in terms of their sine and cosine components Let
f(a, f) be the joint density of (e, f) on the torus 0¢ a, f < 27.

To predict § for a given value of «, the vector corresponding to f‘? is predicted

by the conditional expectation (or regression) of €' i given o, namely

(o) B(eFla) = gla) = g,(a) + igy() = p(a) D), gay. | @1

Or equivalently,
E(cos B a) = g,(a)
and (2.2)

E(sin f] a) = g,()

from which £ is predicted as

tan ] %% i gi(a) 20
oy = f?: T + tan ! i—f%} if gyla)go0 (2.3)
undefined if gl(a) =gy(a)=0.

- Here p(a) represents the conditional mean direction of g given a and 0<p< 1 the

conditional concentration towards this direction. Predicting § as in (2.1) is optimal in

the sense that it minimizes the distance E]fe_l’@ - g(az)]f2 and is very similar to the
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Hleast squares"” idea.
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Note that in this approach, we do not need the knowledge of the joint distribution
of (@, B), but rather the conditional distribution of § given «. This allows us to
take the conditional disiribution for instance, to be a wrapped stable law, as [discussed

in Section 4.
In the absence of further specifications on the structure of (g1(a), g5(a)

it is, in

general, difficult to estimate them from the data although one might adopt
nonparametric curve estimation methods. Even with further specifications, the

determination can be quite difficult, a situation ofien encountered even jin linear

analysis. S0, as in linear analysis, g;(a) and g,(a) are approximated by

suitable

functions. Since the functions g;(a) and 8o(@) are both periodic functions with

period 27, they can be expressed in terms of their Fourier series expa.nsio;ns. This

leads to the method of approximating g,(a) and go(a) by trigonometric polynomials

of "degree m", viz.

m
g(a) R ¥ (A, cos ka + B, sin ka)
! k=0 X k
and
m
gola)  x T (Cpcoska-+ D, sinka)
k=0

for a smitable choice of m . From this, one has the following model:

m
* cos g = kI} (Ay cos ka + By sinka) + ¢;
~0
and
m
sin = I (Cycoska+ Dy sinka} + ¢,
k=0 . ‘

vector zero and covariance matrix ¥, which in general is unknown. The pr
estimating the various parameters {Ak, B, CDpk=0,1,.., m}, their |
errors as well as the matrix T, is considered here using the generalized leas
Large sample tests are proposed for the regression coefficients and for determ:
degree m . When specific parametric models are assumed for the co
distribution of S pgiven a, like the von Mises, wrapped Cauchy etc, gy

(24)

(2.5)

.where ¢’ = (El 52) 18 the vector of errors which is assumed to be random with mean

oblem of
standard
squares.
ining the
nditional
(a) and
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gz(a) have a known parametric form. Problems of estimation and tests of éhypotheses

ahout the regression parameters, in these cases are exploted.

Let (al, ﬂl) ) e s (an, ﬁn) be a random sample of size n .
equations can be written as

m
Yy =cos § = kf(} (A cos ke, + By sinka) + €y;

m
Yo = sin B, = kEU (Cy cos ke; + Dy sin kog) + eg

for i =, ..,n. We assume that B(] = D0 = 0, to ensure identifiability. :

The observational

Writing
(1) o .
¥( ) = (Yll'n R Y].Il)
2 — r
Y = (Yo, v Yy
1 s
E( ) = (e3> epp)
2
B = (e ey
1 cos @) --- cos may sin oy ~+- Sinm ali
1 cos Qg ++ - COB A, sin Gy e sin m @,
X _ . ;
nx(2m+1)
1 cos o v e COS IOy sin o - sin m o,
1 ;
and D = (A, Ay, A, By, Br)

(2) = ,
A =(cy, €y, s €y Dy o, D)

ihe observational equations (2.6) can be written in matrix notation as

NORPSUING
) x @ 4 )

or

| (26)

@7)

(2.8)
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where x*' (X(l)' (2)') ’ 5*' - (5(1)' 15(2)')

=[5 4] =0 @

113

@9)

* !
The covariance matrix of € can be written as Te I where @ denotes the usnal

Kronecker product and I is the identity matrix of order n.

One can now obtam the generalized least squares estimates (possibly multlstage)

of é from the observational equations {2.9). -

However, from the structure of equations (2.8), it can be seen (C.R. Rao [5],

Section 8C.2, Schmidt [6], Section 2.6), that the generalized least squares|

estimates

obtained from (2.9) coincide with the ordinary least squares estimates of 5(1) and

5(2) obtained separately from (2.8). The least squares estimates are given, on the

agsumption that X is of full rank (2m + 1 < n}, by
10 = 1 300

3@ - xxytxe y@)

x

Remarlk 2.1: If the values of o’s are taken to be equally spaced over the
computations become much simpler (see eg. Guest [7]). For instance, if

L= 2—?r(l—n_—ll, 1<i<n, we have the explicit estimates (for 1< j<m):

c:osﬁi cosja; , B =

y 1
cos,Bi,A.__E . 3

I By

[ ]
-

18 1 -
—2 E) A C.:-—
B A € ni1

Il e

1

1 -
== 21 r:(:ns,(ii sinjoy

n
1 . s
Smﬁ cosja; , D =5. i sm,ﬂi sinjay -

(2.10)

circle, the

Remark 2.2: It (o B) »ory (a, B) is a sample for the same given vilue of «,
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then the regression coefficients (i-e. the coefficients in the Fourier series éxpansions of

g;(a) and go(@)) will all be zero except A, and C, and these are given by ‘3‘0 =

%2‘. c:osﬁi and éU = nlE sin ﬁi by taking the unique Moore—Penrose :inve;rse of X/ X
since X is not of full rank, Thus, when several B’s are observed corresponding to the
same « , then their resultant mean direction is obtained as the best predio:t.or of A, as
one would expect. Suppose for each & ,i=1,.,n there are n, obserya’éions

(o, ﬂil),...,(_ai, ﬁini") -+ In view of Remark 2.2 we can first obtain the res:ultant mean

& * o
direction ﬂi for each o and consider (ai, ,Bi) +1=1,.,1n to obtain the regression
equation. '

Remark 2.3: The parameters can also be estimated by minimizing the qfuantity

n m 2
R [cos B- % (Ak cos ka, + B, sin kai)]
i=1 k=0

(2.11)

n l— m . 2
+ ¥ jsin B nkEO (Cy cos ka, + Dy sin kai)]

This method was called the method of "minimum distance" (J.S. Rad [8]) and it
was shown there that the estimators obtained by this method are conistent and
asymptotically normal under mild conditions. Since the estimators (2.10) cdincide with
the minimurn distance estimators, one can conclude that these estimators are consistent

and asymptotically normal. In fact, it is explicitly shown in the next section that 5(1)

and 5(2) are jointly asymptotically normal and asymptotic tests regarding the
regression coefficients are carried out for the determination of the degree m .

The covariance matrix £ can be estimated from the least squares theory as
follows writing:

Rﬁ(i’ i — X(‘)’g(l) _ X(i)’x(xfx)“‘l X:x(l)
= X(i)' (I- M)¥(J) (2.12)

where M = X(X'X) X" and R_ = ((Rg(i, ); 5y o we have E=
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(n ~ 2{2m + 1))—1R0 is an unbiased and consistent estimator of ¥ . From this, the
standard errors of the estimators can also be obtained.

Remark 2.4: Since the number of parameters to be estimated is quite large even for
small values of m , the conventional method of using the residual sum of squares and
cross—product matrix to estimate ¥ and the standard errors of the estimatés may not
provide sufficiently accurate estimators. It is shown by several authors that the
bootstrap method provides much better estimates of the standard errors of the
estimates if resampling is done a large number of times (see eg. Wu [9]). For the

-k
bootstrap, we start with the estimates 4 obtained above in (2.10) and using these

estimates, the error vectors ¢/ = ( €1j» €9;) are computed from the model {2.6). From

* *
the emprical distribution of £1 - £ @ Tandom sample of size n , say &1 0 fn ig

drawn. Using these, pseudo data (Y(I)I, g(z) I) can be generated from

HOBPSTOMIL )
$2 - x 3@ 4 @

where ¢ (1)= }’ for i=12.

11 r
Assuming now that the data (ﬁ’(l) YQ) ) are generated from the model (2.6),

the regression coefficients .\ are estimated as before. This procedure is repeated a
large number of tjmes. This simulation preserves the assumptions that the errors are
independent and identically distributed. In each repetition, a new set of sa,mple of error
vectors from the empirical distribution is generated and pseudo data are genera.ted from

model {2.6). Usmg these, a new set of estimators of A are obtained. From these sets
thus obtained, the sample covariance matrix can be abta.med providing an estlmate of
the dlspersmn matrix I .

Remark 2.5: It is shown in Bhimasankaram and Jammalamadaka [10] how
recursive estimation and testing in linear models can be carried out when ihe sample
size is increased. The methods developed there can be adapted to the present case also
and the details are omitted as they can be directly worked out from those in the above
cited paper.
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Remark 2.6: The hypothesis that # does not depend on « or gl(a) = AO and

gz(a) = C{) can be tested by an asymptotically x2 test, following the discussion in
Section 3.2.

3. DETERMINATION OF m IN THE REGRESSION EQUATION |

A general problem in fitting any polynomiat regression is the determination of ,'the
degree m of the polynomial. In what follows, some criteria for choosing m are
suggested. Large sample tests for the validity of the criteria are also given. A Farther
problem would be to update the estimates every time the degree is ch:mged. In the
ustal polynomial regression for linear variables this is easily done with the use of
orthogonal polynomials. Such orthogonality holds good in the preseat case also if 0’8
are taken to be equally spaced (see Remark 2.1). In the more general case, the
recursive method suggested below can be used to determine the degree m as well as to
update the estimates without having to compute all the coefficients afresh when the
degree is increased. This updating involves minimal additional computations. If is of
interest to note that the different criteria discussed below leading to the determination
of the degree, all lead to the same computations.

3.11. One of the considerations in determining the degree m could be to see the
reduction in error sum of squares by increasing m . The effect of augmenting the
design matrix X on the residual sum of squares involves standard calculations (see
Seber [11] and is dome in our special case as follows (see also Bhimasankaram and
Jammalamadaka [10] when X is not of full rank).

Deciding to take (m + 1)th degree trigonometric polynomial amounts to adding
columns {cos(m + 1)}a, ,..., cos(m + 1) @)’ and (sin(m + 1) a, ..., sin{m + 1) a)

as the (2m + 2)th and the last columns to the design matrix X given in (2.7). The

augmented matrix can be written as

' cos {m -+ 1) @, sin (m + 1) a
X(1)=(X:W)P where W = : :

cos (m + 1) &, sin (m + 1) o

and P is a suitable permutation matrix which keeps the columns of W in correct
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places. The corresponding model is now

O i
(3.1)

¥ =) 2fff + 9

where A i and A f are (2m + 3) x 1 vectors of coefficients which can be estimated
by the method of least squares. The least squares estimates are given for i = 1,2, by

3of = by Xy Xy YO
Now, .

Xy Xygy = P/

XX X’W]

In order to invert X' (1) X(l) the following result is used.

AB

Theorem (Rohde [12]). For any partitioned symmetric matrix [ we have

A B
. lcp
where F=D-CAB. Using this result, we can write

X—’X X’ _1
WX Ww|

CD

A1 ¢ a7 lgrlca! —A“IBF‘IJ
-1

Flga™! F

xx o (T xw)
+ H

xx)y ! xew)
0 0 ( W] (32)

I

I

where H =WW-WXXX)Ixw
= W'(I- M)W writing M = X(X'X)"1x" .

The least squares estimates can then be written as
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i) _ pryxs Ao X
2 =Py e ['V‘V;

yli)

~N

xexy? xe v O - xy =t xeng - vy YO
B owe1- M) YW

- ’

(3.3)

|
where N =W H™"W’ : The error sum of squares will now be

'-Y(i)l'y(i)_¥(i)’(x L W) 5{3 - Y(i)’(I _ M)\_{(i)-Y(i)’(I ~ M)N(I ~ Mn{(i) (3.4)

on substitution from (3.3) and simplifying. From (3.4) it can be seen that the reduction

in Ro(i,i), the error sum of squares corresponding to é(i), by taking the additional
terms is

YO oy na-my v 5 0. (3.5)

Thus before deciding to take the (m + 1)th degree terms, we may first compute (3.5)
and if this is sufficiently large from a practical point of view, we may decide to include

the (m + l)th degree terms. When n is sufficiently large, a test for testing whether
the proposed additional parameters are significantly different from zero, is available and

is discussed in section 3.2. Notice that the computations (3.5) use (I - M) ¥(1) which
are already available and we only need to find N for which only a second order matrix
H has to be inverted. Further, if the additional terms are deemed necessary, the

computations we have already made ate enough to estimate A B using (3.3).
To decide whether to include yet another term, we start with X(l) and add two
columns (cos (m +2) @, -+~ , cos (m +2) @ ) and (sin(m+2) o, ---,

sin (m + 2) an)’ as (2m + 4)th and the last columns of X(l) and proceed as before.
This procedure can be repeated successively.

Remark 3.1.1: In the special case when the column vector(s) W that are adjoined to
the original design matrix X, are orthogonal to the columns of the design matrix X ,
the coefficients that we have already obtained are unaffected as the correction term

L
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o xyixwaE™ Wt - M)Y®) = 0 and the additional coefficient(s) is (are) given

by Hw (- My = (ww)y ' wvl) sine WM =0 and H=W/(1-MW
—WW. |

3.1.2: An alternative approach which is algebraically equivalent to the above in
the determination of m is to assess the increase in the estimate of the concentration
parameter of the distribution of # given «.

Having computed the mth degree trigonometric polynomial approximations, say
& m(a:) of g(a) for i =12 the concentration parameter is given by

1
o (0) = {85 (a) + g2 ()} (3.6)

Notice that p_(a) is an increasing function of m and pp(@) T pla) as m o for
any given «. Since 0<p(a) <1, wehave 0<p_(a) <1 forany m and any given

o . Computing p m(ai) for each ¢,i=1,---, n after an mth degree trigonometric
polynomial is fitted, we can decide whether an additional term is to be inciuded
depending on whether there is a significant change in the estimate of the concentration
parameter or not. Note

P =%§1 e =% B 1@ + B(oy)
Tin = (3.7)
_1 %1 yi'm v -1 5 )y —Ro(3.)] -
je=1 ° - =1

Workiﬁg with the augmented matrix as above, it can be seen that .the increase in the
estimate of the square of the concentration parameter is given by
\
1§ vl (@
= B YW a-mna-m) YW,
=1 i
which is equal to the reduction in error sum of squares given in (3.5). This shows that
this criterion is equivalent to the one discussed in Section 3.1.1.

2k
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3.1.3. The extent to which the accuracy of prediction of # would be improved by
bringing in additional terms in the Fourier series approximation, can aiso be
ascertained in a way similar to the linear analysis where partial correlation ratio is
considered (C.R. Rao, [5] p. 268). It may be recalled that in linear analysis, if we are
considering only linear predjctoré, the proportional reduction in the mean square, error
when variables Xl* sae Xp are used to predict Y rather than Xl’ “ee Xk where

p >k, is given by

2 2
_Po(1,...,p) P01, ...k}
Po(1,....k)

pg(k—i-l,...,p)(l,...,k) (33)

s

where p%(l i the square of the multiple correlation coefficient between Y and
,-

.y}
(Xl joees Xm). i % the vector of covariances of Y and X;,...X and C is the

. . . yr . 2
dispersion matrix of (Xl,..,X m) assumed positive definite, then we have pO(l,...,m)

= 3010—130/ a%, . An estimate of this is obtained by taking the sample variances and
covariances. In the present situation, we consider

O y® 50 (030
2o n = > (3.9)
Piom = yO )7y y (1)) )

for i =1, 2 which is analogous to the sample multiple correlation coefficient in the

* ., . N, g
linear case. Notice that 0 ¢ pigmf 1 since ‘“{(1) M ¥(1) < HNK(‘) ¥(1) . This is easily
seen since M is idempotent and for any positive definite matrix A , sup Z'AZIT'T <

Anax where A . is the largest eigen value of A . The stated result follows since

the eigen values of M areall +1. Consider

*2 - *2
*2 _Pig(m+1) ~ Piom
*2

Piom(m+1) = ) for i=1,2 . (3.10)

~Piom

which is the proportional reduction in the regression sum of squares to ascertain the
accuracy of the prediction of §. If the quantities are significantly large, we decide to
include the higher order term also. A large sample test to see whether this is
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significantly large is give in Section 3.2. From (3.9) it can be deduced that

*g Y0 (1- ) N1 — my Y@
YT ()

Piom(m+1) = (3.11)

using the computations made earlier. Ii may be noticed that here again we are led to
the same computations as in the above two criteria. :

3.2 Asymptotic tests for the determination of the degree m:

From the discussion in Section 3.1 it ig scen that the degree m can he

determined on the basis of 5, = ){(i) ’(I - M)N(I - M)}’(i) or some suitable function
thereof. If the sample size is sufficiently large the following asymptotic tests can be
used for the determination of m .

. | "? PI1% (X 1
Propgsition: Let Y= | andlet lim [—-n—] = Q which is
P 0,0, a, N-m

172 2 )
finite and nonsingular. Then for any fixed m, (1) n /2 X/ 5(1) converges in
distribution to N(g, a? Q) as n~a fori=12 {2) ﬁ(é(i)-— é(i)) converges in

distribution to N(0, a? Q—l) as n-w for i=1,2. .
This proposition can be proved as in Schmidt [6] section 2.4 and the details are
omitted. .

Since Ro(i, )/[n ~ (2m + 1)] is a consistent estimator of o"i'2 , for sufficiently
large n, we can approximate the distribution of

P2 G0 - )0y e - y6)
as xX(2ma + 1)

*
Remark 3.2.1:  If one uses a bootstrap estimator ”iz for ar? , then the distribution
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of ;%—2— (51(11) - %(i))’(X’X)(ﬁ\](li) - A(i)) can be approximated as x2(2m + 1) and
i
similar modification can be made in all the computations discussed below.
Further, the marginal distribution of any subset of A() is also a.symptotxcally !
normal, and tests for determining the degree m can be based on this result.

Let m~'(;) = '(A(i)' )\(i) ) the last two components of ON Let
(1) "(1),2m+2’ "(1),2m+3) "y

their least squares estimates be denoted by migi) .
' 1
From {3.3}, we have mégl; = H_IW’(I M) Y(l) which is unbiased for ,\( 1),
1

By direct computation we have the dispersion matrix of mé(z) as V(m'"g ;)

1
O'?H_l. To examine whether an (m + 1)th degree polynomial improves the
prediction significantly, we test,

H((]i) : m')\'\(i) 0 against H{]) A(l) $0.
(1) (1)

From the above discussion, we have

M_n-Cm+1) 56) 5 ;0) _
T NEn m“(1) ngd\(l) (3.12)

is asymptotically distributed as a x2(2) under H((}l) . Substituting the estimates, the
test statistic has the form

: O 1 - N —myy®
(1) = (n— X ( A
™ = (0 - (2m + 1)) T )

(3.13)

Thus for all the three criteria proposed in Section (3.1) to determine the degree
m , asymptotic tests can be obtained using i as defined in (3.13). We settle for

an mth degree polynomial, only if both Hgi) i=1,2 are accepted.

Remark 3.2.2:  In the above discussion we have used a x2 test assuming the
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consistency of of Rﬂ(i, i) . For moderately large n, one can also justify the use of an
F test for H(()i) ag follows:
Lemma: Under Hgi) , }’(i)l(l - M)g(i) and X(i)’(l ~ M)N(I - M)¥(i) are
asymptotically independent.

Proof. Writing R, (i, i) as the residual sum of squares when a Kth degree
polynomial is fitted, we have
Ry () Y -y y®) .
5 5 asymptotically ¥“(n — (2m + 1)) as n - w
g’ a5
i i
for i =1,2. Further, by direct computation using (3.3)

Rotm + &) ¥ myy® ¥ O - ayne - myy@

2 2 - 2
i % 75
which is asymptotically xz(n - (Im + 3)) . Moreover, under H((]i),
Y& (1 - myn@ - myy® )
) is asymptotically x“(2) . From these we conclude the
[+
i
stated result.

Using the above l¢mma

¥ - anna — myy®

)
7y

n - (%m + 1) (3.14)

has an F(2, n—(2m + 1)) distribution under H{()i) . Thus Hgi) can be tested using

F(l) and the degree m can be determined.

Remark 3.2.3: To decide the degree m , it is suggested above to comsider H((}i)

separately for i =1, 2. It may be pointed out that we can derive the joint asymptotic

. (1) 2
0" mé(l) 0 and

-

distribution of (é(l), 5(2)) , and a test can be obtained for H
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oy,
mé(l) ’

4. REGRESSION IN SOME PARAMETRIC MODELS

In this section exact forms of g;(a) and gy(a) in some special cases when the
conditional distribution of # given a is of known form are obtained and the problems
of estimation and testing hypotheses about regression parameters in these cases are
considered. t

4.1: Suppose.the conditional distribution of 8 given a is von Mises with density
function

1616) = gyl ex0 m cos(f - ) (1)

where u{a) is the conditional mean and % is the concentration parameter which is
also possibly dependeni on « . In this case

g,(0) = A(s) cos @)
go(a) = A(x) sin i @) (4.2)

where A(x) = I,(k)/Iq{k} . Here p(a) is of interest and without farther structure,
one may have o resort to the nonparametric regression methods or estimate gi( a)’s by
the method described in Section 2.

{a) The hypothesis that § does not depend on « is equivalent to

Hy: gy(a) = Ay and gy(a) = C; . (4.3)

Estimating AO and CO as described in Section 2,

. 0= sinﬁi.

B
—

Writing ¢’ = (cos g - AO , 8in ﬁi - éu) and ¢ = %B & » one has that )3_1/23 is
1
asymptotically distributed as N,(0, I) nnder H; and consequently
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S=ne ¥l (4.4)

is asymptotically distributed as a x2 variable on 2 degrees of freedom under HO '

where T is an unbiased, consistent estimate of % obtained from (2.12).

If data are available in the form that for each o; there are (ﬁil"“’ﬁin.) , i
1

1,...,p then E(,B[ ) = u(a B where Zi is the circular mean direction of
(B> Bin ) Here one can test the hypothesxs that p,(a) does not depend on o {i-e,

the regressmn is constant) by the appropriate Anova procedure described in Mardia [13]
p. 163).

(b} Suppose pla) = p + 2w (mod 27) where u and a are both unknown. A test
for a =0 corresponds to the regressmn being independent of o .

For the more general hypothesis

Hj:a=a, (not an integer),

h= g, and &= K, (4.5)

one can proceed as follows. Under H0 ,

g;(a) To= A(xy) cos {1y + 35)
. ='A(n0_) COS 4, CO5 A0 — A(ky) sin g, sin aga (4.6)
go(®) = A{np) sinuy + aya)

= A(k) cos pya + A(no) sin pig, cos aga
But
230 : 1 cog @ cos 2¢
€08 Ay = —— Sin a3 +53 53 35 t- + (1)
0 25 27+ m-+ag

m-1 co§ ma+ }

and
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. _ 2. sin @2 sin 2a -l m sin ma
sin a.oa-—ism 3.0 aOW[F’:F—‘ET—+ U ( 1) _]]:2?3?——-‘!' (4.7)
0 0

(cf. Carslaw [14] p. 265, problem 6). From (4.7) one can obtain the Fourier series
expansions for g;(a) and 85(a) . From this one can test the given hypothesis by
comparing the estimates of the Fourier coefficients as obtained from the least squares
theory with the values obtained from the above expansions (after fixing a suitable value
of m ) by using the proposition in Section 3.2,

(ii) 2, is an integer, say r, then we have
g(a) = A(#y) cos g co8 Ta— A(sg) sin M, sin 1ex
gy(a) = A(sp) sin K cos re + A{x,) cos My Sin Tar .

In this case the hypothesis becomes

HO: Ar = A(,-co) cos yig, B = —A(no) sin Hy
(4.8)
Cp = A(x,) sin g D= A(rpy) cos ty
and all the other coefficients are zero, This again can be tested using the results of the
proposition in Seciion 3.2.

4.2: Suppose the conditional distribution of g given o is wrapped Cauchy with
frequency function

\ ,
(6] a) = 5k L :
Wl =2 1+p% - 2 cos( By a)) “9)

where 0< p< 1, which may depend or «. From the characteristic function

¢p( 0) = ol a)p-ap

where p=e™® foran positive integer values of p, one has

B1(2) = o cos (o)
(4.10)

g(@) = psin u(a) .

\ B
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Here too one can consider the problems of testing as in the above case.
3

4.3: Suppose the conditional distribution of § given o is wrapped normal with the
characteristic function

() = in(a)p—{o*/2)p” (411)

for all positive integer values of p. In this.case

—o%/2 —o?/2
gla)=e cos g{a) , goa)=e sin g a) . (4.12)
4.4:  As a final example, suppose the conditional distribution of § given o is, more

generally, a wrapped version of a stable law on. the line with characteristic function
given by

¢p(a) = exp{ip(a)p - c |p|® (1 - &sgn(p) w(p,r)} (4.13)

for some p{a) real, c >0, |6 <1 and 0 <r <2 which may also depend on a,

and

tanr—g frgil

w(p,1) =
«~%10g|p] ifr=1

r

for any imtegral value of p . Spécia.l cases of this include the wrapped Cauchy
distribution when r = 1, and the wrapped Normal distribution if 1 =2 . When r =0
one has ¢ = 0 and one gets the characteristic function of the degenerate distribution
with mass concentrated at u(a) . In the general case,

g(e) = e cos{u({a) + §tan %—r]
(4.14)

gole) = et sin[g(e) + 6 tan f—g-] :

Again several estimation and testing problems concerning various parameters can be
handled by taking suitable trigonometric polynomial expansions of gl( a) and go(a) -
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be considered elsewhere,
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